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The existence of an inverse cascade is demonstrated for three-dimensional 
incompressible flow displaying the Anisotropic Kinetic Alpha (AKA) instability 
(Frisch, She & Sulem). By means of full three-dimensional simulations of the 
Navier-Stokes equations, i t  is shown that flow stirred at small scales by an 
anisotropic force lacking parity-invariance (i.e. lacking any centre of symmetry) can 
generate strongly helical structures on larger scales. When there is a substantial 
range of linearly unstable modes, the most unstable ones emerge a t  first, but are 
eventually dominated by modes with the smallest wavenumbers. 

The key observation for the theory of this inverse cascade is that, in the presence 
of forcing, the small-scale Reynolds stresses will become dependent on the large-scale 
flow. Elimination of the small scales produces the nonlinear AKA equations for the 
large-scale flow. The latter have non-trivial one-dimensional solutions also displaying 
an inverse cascade, qualitatively similar to the one reported above. This cascade has 
been numerically simulated over a range of more than two decades. For a simple 
choice of the forcing, a steady state is eventually reached; it can be described 
analytically and presents interesting geometric features in the limit of very extended 
systems. The corresponding energy spectrum has a k-4 range. A number of other 
scaling relations are also derived. 

The multi-dimensional extension of the theory is briefly considered. The resulting 
large-scale structures are conjectured to correspond to solutions of the incompressible 
Euler equation. 

1. Introduction 
It has been well established from considerable experimental and observational 

evidence that self-organization of flow into large structures is not precluded by 
turbulence and strong nonlinearities. There are instances where large-scale structures 
are produced by an instability acting directly a t  such scales. Here, we shall be 
interested in the alternative scenario where large-scale structures are produced by an 
inverse cascade. By this we understand that large structures are eventually 
:merging, although initially the instability acts dominantly a t  much smaller scales. 
Kraichnan (1967, 1976) suggested that the formation of large-scale structures in two- 
limensional incompressible turbulence is due to an inverse cascade driven by 
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negative viscosity instabilities. The Kolmogorov flow near threshold has been shown 
to produce an inverse cascade (She 1987), which can be described in deterministic 
terms. In three-dimensional magnetohydrodynamics the inverse cascade of magnetic 
helicity has been related to the a-effect instability (Frisch et al. 1975). 

It has been found recently that three-dimensional (non-conducting) flow can also 
exhibit an instability, called the Anisotropic Kinetic Alpha (AKA) instability, when it 
is stirred a t  small scales by a force which combines anisotropy with lack of parity- 
invariance, i.e. no centre of symmetry (Frisch, She & Sulem 1987). We shall show 
here that this can lead to large-scale self-organization. We shall mostly consider an 
instance of the problem, which allows considerable analytic insight. In $ 2 ,  we 
summarize basic general properties of the AKA effect ; a more formal presentation 
together with some background material may be found in Frisch et al. (1987). In 
section $3, we give numerical evidence that the AKA effect may give rise to a 
generalized form of inverse cascade; this is based on a fully resolved three- 
dimensional simulation of the Navier-Stokes equations. In  $4,  we show that insight 
into this inverse cascade can be obtained from a one-dimensional model. Its 
numerical integration indeed reveals a very extensive inverse cascade, leading 
eventually to the formation of steady large-scale structures. Section 5 is devoted to 
the scaling laws of such structures in the limit of very large systems. 

2. The AKA effect 
We are interested in the effect of a large-scale velocity field superimposed on a flow 

governed by the incompressible Navier-Stokes equations, in a situation where the 
Galilean invariance is broken by stirring forces (or by boundaries). The Reynolds 
stresses can then become dependent on the large-scale velocity. If this happens, we 
shall say that there is an AKA effect. This, in turn, will affect the large-scale 
dynamics. Specifically, we assume a stirring forceJTr, t ) ,  which is either periodic in 
space and time, or random homogeneous and stationary; we denote by 1, its 
characteristic spatial scale. We assume 

(f) = 0, (2.1) 

where the angular brackets denote space-time (or ensemble) averaging. In the 
presence of a large-scale velocity w, the resulting small-scale flow Iz satisfies the 
Navier-Stokes equations with an additional advection term : 

a, 6, + wj a, iii + ai(si c,) = - aip + vv2si +fi, ai sj = 0, (2 .2)  

where, to leading order, w should be uniform and constant. The large-scale flow is 
governed by the AKA equation : 

(2.3) a, wi + w, +R,J = - ai p + Vvzwi, a, wi = o, 
where the Reynolds stresses, 

Rij = (ii, Cj), (2.4) 

are w-dependent through (2.2). 

perturbations, (2.3) can be linearized, yielding the linear AKA equation : 
When the issue is the stability of the small-scale flow to weak large-scale 

3, wi = aijl a, wl - ai + vvzwi, (2.5) 
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with 

The linear dependency of the Reynolds stresses on the large-scale flow directly (and 
not on space derivatives such as rotation or shear) is characteristic of the AKA effect. 

We shall be here interested in situations lacking parity-invariance. Parity- 
invariance means invariance under space, velocity, and force reversals. As 
immediately follows from (2 .6) ,  parity-invariance implies that Rij is an even function 
of W ,  and thus the vanishing of the aij2 tensor. Note that helical flows necessarily lack 
parity-invariance, the converse being false. Similarly, the aijl tensor vanishes in 
isotropic situations, since the tensor is by construction symmetric in i a n d j ,  and 
there exist no non-vanishing third-order tensors with such symmetry. Other 
instances of vanishing are given in Frisch et al. (1987) where a more systematic multi- 
scale derivation of the AKA-equations ( (2 .5)-(2.6))  is given. The scale separation 
between the basic flow induced by the forcing and the AKA-driven large-scale flow 
requires either a small Reynolds number, a small anisotropy or a small parity 
violation. 

It is important to point out that (2 .5)  for the linear AKA effect may already be 
found in Krause & Rudinger (1974). Our tensor aiil is there denoted Aijk.  However, 
Krause & ltiidinger restricted their investigation to homogeneous isotropic 
turbulence, so that the AKA effect disappears entirely. They also claim (in a note 
added in proof) that the effect disappears in homogeneous turbulence, a statement 
which is clearly too general. 

For non-vanishing aiil tensor, the large-scale behaviour will depend on the 
eigenvalues of the operator in the right-hand side of the linear AKA equation (2 .5) .  
In  two dimensions, it may be shown, using a stream-function representation, that 
thc first-order operators produce only dispersive effects. Thus, large-scale weak 
perturbations will propagate, while being slowly damped by viscosity. I n  three 
dimensions, large-scale instabilities have been obtained, leading to exponentially 
growing helical modes (Frisch et al. 1987). 

When instability occurs, it follows from (2 .5) ,  that the growth rate has the form 
aE-vk2, where Ic is the wavenumber of the perturbation and a denotes a positive 
coefficient depending on the direction of the wavevector. This functional form of the 
growth rate is similar to that found for the a-effect in MHD (Steenbeck, Krause & 
RBdler 1966; Moffatt 1978) and in compressible flows (Moiseev et al. 1983). 

3. AKA instability and inverse cascade 
The a-effect is the main motor of an inverse cascade in three-dimensional MHD 

(Frisch et al. 1975; Meneguzzi, Frisch & Pouquet 1981). Brissaud et al. (1973) raised 
the possibility of an inverse cascade in ordinary incompressible three-dimensional 
helical flows. This effect could not be obtained in the context of isotropic closure 
calculations (And& & Lesieur 1977). It is however conceivable that the AKA 
instability drives some kind of inverse cascade in anisotropic flows when there is a 
wide range of linearly unstable modes. If it exists, the phenomenon will manifest 
itself by the eventual dominance of the largest available scales. Note that such a 
cascade cannot result just from the linear AKA instability, since this would forever 
give dominance to the mode with the largest growth rate. 
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Henceforth, we shall be more specific and concentrate on the model of forcing used 
by Frisch et al. (1987), namely 

f 3  =fi+f% I 
where V, is a typical velocity from which we define a Reynolds number, characteristic 
of the small-scale flow : 

R=-. 

This is one of the simplest models which displays an AKA instability. Note that 
parity-invariance is broken by the time dependence. The time dependence can be 
removed by a Galilean transformation. However, it then becomes necessary to endow 
the basic flow with a uniform component. This somewhat blurs the distinction 
between large and small scales. 

In order to test the possibility of an AKA-driven inverse cascade, we have set up 
various numerical experiments, two of which are now reported. The three- 
dimensional Navier-Stokes equations with the above forcing have been integrated 
by a spectral method. For an overall 2n-space periodicity, the relevant parameters 
are the wavenumber ko = 111, of the small-scale forcing and the Reynolds number R. 
The unit of time is set by the choice v = n. I n  all the runs, a very low amplitude 
random seed, identical for all Fourier modes is introduced a t  time t = 0 in order to 
allow the development of large-scale instabilities. 

The first experiment, performed at a resolution 323, corresponds to Ic,  = 9 and 
R = 1.5. Modes with wavenumber from 1 to 4 are linearly unstable, the maximum 
growth rate being reached for wavenumber 2. Figure 1 gives the time dependence of 
the energy E ( t , k )  in spherical shells containing all the Fourier modes with 

(3.2) 
v, 10 

V 
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FIGURE 2. Fully resolved simulation of an AKA-driven inverse cascade, using 643 modes. The 
range of linearly unstable modes extends from k = 1 to k = 8. Forcing is a t  wavenumber 14. The 
figure shows the energy spectrum E(t, k) for various times in log-log coordinates. In (a ) ,  the dots 
are for t = 0.05, the plus signs for t = 0.1, the stars for t = 0.15, the circles for t = 0.2, the crosses 
for t = 0.3, and the squares for t = 0.4. For clarity, late times are shown enlarged in ( b ) ;  the dots 
are now for t = 0.2, the plus signs for t = 0.3, and the stars for t = 0.4. 

wavenumber from k- 1 to k ;  for clarity, we display only k = 1, k = 2, and k = 9. Up 
to about t = 0.5, we obtain exponential growth for k = 1 and k = 2, the latter being 
much faster, as predicted by linear theory. Beyond this time, nonlinear effects 
become significant. We then observe a t  first a plateau, indicative of some kind of 
feed-back saturation (Frisch et al. 1987). Then, we find that the k = 1 modes leap-frog 
the k = 2 modes, around t = 0.9. Eventually, an approximately steady state is 
reached, with the modes of largest scale (smallest wavenumber) significantly 
dominant. 

To find if this trend persists with a more extended range of unstable modes, we 
performed a second experiment with a resolution 643. The forcing wavenumber is 
k, = 14 and the Reynolds number R = 2. The linearly most unstable modes are now 
around k = 4. With such a wider unstable range, it is of interest to show the evolution 
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of the full energy spectrum E(t,  k ) .  Figures 2 ( a )  and 2 ( b )  display E(t,  k )  for various 
early and late times, respectively. Until about t = 0.12, the fastest growing modes 
stay around k = 4, as expected from linear theory. Then, the dominant growth rate 
shifts to k = 1.  Around t = 0.2, the linearly most unstable modes start depleting. At 
t = 0.3, the energy spectrum has its maximum a t  k = 1.  At t = 0.4, an essentially 
steady state is reached in which the energy spectrum is decreasing for k from 1 to 10. 
We refer to this dynamics as an inverse cascade. It is clearly not a step-by-step 
cascade of thc Richardson type but rather a highly non-local process. 

We have also analysed the flow in more detail by listing at various times the 
wavevectors of those large-scale modes contributing significantly to the energy 
spectrum. Up t; about t = 0.2, only z-dependent large-scale modes are significant. 
Thcn, x- and y-dependent modes become appreciable, but never vcry strong; a t  
t = 0.4. large-scale modes which are only z-dependent dominate, in energy, by about 
a factor four over other modes. 

The preceding numerical experiments (which required several hours of CRAY-2) 
give some evidence that the AKA instability can drive an inverse cascade. A t  this 
point, however, it is not clear that the trend observed so far will persist with an even 
wider range of unstable modes. Pushing our full three-dimensional Navier-Stokes 
calculations much further would become impractical. A contracted description 
taking advantage of the separation of scales will allow us to proceed. 

4. The one-dimensional nonlinear AKA equation 
The AKA equation (2.3) can be used as a starting point for studying the large-scale 

dynamics, provided there is a separation of scales between the forcing modes and the 
unstable modes. This can be achieved in several ways. One way is to have a small 
Reynolds number R ,  defined by (3 .2)  ; the unstable modes then have scales O(R-,) (in 
units of Zo),  as shown by Frisch et al. (1987). Another way is to use a force with a weak 
violation of either parity or isotropy: this will make the tensor (equation (2.6)) 
small, thereby ensuring the separation of scales. Finally, the separation of scales can 
be a dynamical consequence of the inverse cascade, when the latter has proceeded 
sufficiently far. Henceforth, separation of scales is assumed. 

In  order to  use the AKA equation (2.3) effectively, we must be able to  estimate the 
dependence of the small-scale Reynolds stresses Rij on the large-scale flow w. For 
this, (2.2) must be solved, a t  least approximately. When the Reynolds number R is 
small, (2.2) can be solved, to leading order, by dropping the nonlinear term aj (GiGj) .  
For the specific example of stirring force (3.1), the Reynolds stresses are given, to 
leading order in R ,  by Frisch et al. (1987) : 

where w = (wl, w2, w3) is 

4 3  = RlP 
R23 = R22, 
R,, = 0, 

R33 = 4, +R22, 
the large-scale field 
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The validity of (4.1), as approximate expressions for the Reynolds stresses, is not 
limited to just  small Reynolds numbers. Indeed, when the large-scale flow w becomes 
strong, as it will if an inverse cascade is present, the nonlinear self-advection of the 
small-scale field becomes negligible compared to its advection by the large-scale 
flow. 

From now on, we shall work with a specific model which has the potential of 
capturing, a t  least qualitatively, what we observed in the full three-dimensional 
simulation of $3, while permitting us to go much further in the study of the inverse 
cascade. The model describes only large-scale flow, the dynamics of which is assumed 
to satisfy the AKA equation (2.3) with Reynolds stresses given by (4.1). We note that 
(2.3) admits non-trivial one-dimensional solutions (as we shall see), but it also admits 
two- and three-dimensional solutions. In this paper we restrict ourselves to the 
former case, with some comments on the latter in the conclusion. Specifically, we 
assume spatial dependency only on the z-coordinate, which corresponds to the 
(linearly) most unstable modes. 

Substituting (4.1) into (2.3) with only z-dependence, we obtain a system of PDEs 
henceforth referred to as the nonlinear AKA equation: 

av a a 1 

The variables used here are related to the original ones as follows: 

whcre L characterizes the largest available scale in the flow. 
Notice that, because the solution depends on z only and the flow is incompressible, 

thc nonlinear self-advection term in (4.2) drops out. Still, the modification of the 
Reynolds stresses by the large-scale flow results in a non-trivial 'feed-back ' 
nonlinearity. 

Hereafter we limit ourselves to solutions which are 27c-periodic in the Z variable. 
The only control parameter is then a given by (4.3). Although we assumed the forcing 
Reynolds number R to be small, a also involves the aspect ratio LIZ, and can thus 
be of arbitrary strength. 

For a < 2, the solution u = v = 0 is stable. As a crosses the value 2, the mode of 
wavenumber k = 1 becomes unstable, as readily seen by linearizing (4.2). At this 
point a stcady subcritical bifurcation occurs (Frisch, She & Sulem 1988). Numerical 
integration of (4.2) near threshold, starting with small u and v has shown that, after 
transients, a finite amplitude steady solution is obtained. 

Our main interest, in this paper, is in cases of large a ,  when there is a wide range 
of unstable modes, a prerequisite for an inverse cascade. For such strongly nonlinear 
regimes, it is of intercst to put (4.2) in a more symmetrical form: 

(4.4) 

where 

I2 

u = u - 1 ,  V = w + l .  (4.5) 
FLM 205 
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t 

FIQURE 3. Simulation of the one-dimensional nonlinear AKA equation (4.4) governing the large- 
scale dynamics for a = 9. The figure shows the evolution, in lin-log coordinates, of the energy 
E ( t , k )  for k = 1 (full), k = 2 (dashed), k = 3 (dashed-dotted), and k = 4 (dotted). Kote that 
the behaviour of modes k = 1 and k = 2 is similar to that of the full simulation (figure 1). 

The simplification which occurs by this velocity shift is related to the fact that the 
stirring force (3.1) can be made time-independent via a Galilean transformation. In 
the (u ,v )  variables, it is natural to  impose the absence of any uniform component: 
ti = 8 = 0, a condition which is preserved in time. Here, the overline bar denotes 
averaging over the 2a periodicity in the Z variable. As a consequence, 

0=-1, V = + 1 .  (4.6) 

We now report on a detailed numerical exploration of (4.4). The numerical scheme 
used is a collocation spectral method in space ; the time marching is done by a ’slaved 
Adams-Bashforth ’ scheme, an adaptation of the ‘slaved-frog ’ scheme (Frisch, She 
& Thual 1986). With suitable resolution (up to 3000 collocation points for a = 700), 
this scheme provides the high accuracy required for large a. Initial conditions had 
a low amplitude random excitation with a flat spectrum extending from k = 1 to 
k 5 8. 

Figure 3 shows the evolution of the energy of Fourier modes with k from 1 to 4, 
for 01 = 9. This is qualitatively quite similar to figure 1 obtained from the full three- 
dimensional simulation. I n  particular, the linearly most unstable mode, here k = 2 ,  
dominates at first. Then the mode k = 1 leap-frogs the mode k = 2 and finally a 
steady state is obtained. Thus, the early symptoms of an inverse cascade, as observed 
in the full simulation, are reproduced by the one-dimensional nonlinear AKA 
equation. By increasing considerably the number of unstable modes, we were able to 
observe an actual inverse cascade. Figures 4(a) and 4 ( b )  correspond to  a = 128. They 
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FIGURE 4. Simulation of an inverse cascade using the nonlinear AKA equation (4.4), for a = 128. 
Log-log representation of the energy spectrum for ( a )  various early times and ( b )  later times. The 
labels t ,  to t ,  correspond to times t = 0.02, 0.04, 0.09, 0.23, 1.5, respectively. The latest time is in 
the steady state. For clarity, the spectra beyond k = 150, which fall off very quickly, are not shown. 

12-2 
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FICIJRE 5.  Evolution of the spatial structure of the solution to the nonlinear AKA equation for 
a = 9 ( a )  U ( t , Z ) ;  ( b )  V(t,.Z)). The labels t , ,  t ,  and t ,  correspond to times t = 1 ,7 ,10 .  Note the 
transition from a two-hump to a one-hump solution. The latest time is in the xteady state. 

show the energy spectrum in log-log coordinates a t  various times. The energy 
spectrum is defined as E ( k )  = +(14(k))2+/6(k)12),  where 4 and 6 are the Fourier 
transforms of u and v. We see that the energy grows, while migrating to smaller and 
smaller wavenumbcrs. Eventually, a steady state is obtained. 

It is of interest to look a t  the evolution of the (U,  V )  velocity field in the physical 
space. Figures 5 ( a )  and 5 ( b )  show U ( 2 )  and V ( Z ) ,  respectively, for a = 9 a t  three 
times, chosen to correspond to interesting features in the evolution of the Fourier 
modes (figure 4). As long as the k = 2 mode dominates, we observe a two-hump 
solution; after the mode E = 1 leap-frogs the mode k = 2 ,  we observe a one-hump 
solution, preserved into the steady state. We stress that in the process, a plateau is 
formed, where U and V are almost flat. This plateau gains considerable extension for 
higher values of a (see below). 

Figures 6 ( a )  and 6 ( b )  show the evolution of the total energy E = $((u2+w2)) and 
the total helicity H = +( (v a, u- u a, v)) for different values of a. The general trend 
in the energy is to increase in time for all values of a, while the helicity has a more 
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FIGURE 6. Evolution of (a) total energy and ( b )  total helicity for various values of a. 

complex bchaviour. The resulting steady state has an energy growing with a and a 
negative helicity, which is also growing (in absolute value). 

For all cases studied, we found that the solution locks eventually into a steady 
state. Figure 7 shows the steady state graphs of U ( Z )  and V ( 2 )  for various values of 
a.  For all a ,  the solutions are found to be antisymmetrical: 

V(2’) = - U( -Z’), 2’ = 2-z,, (4.7) 

after a suitable shift 2,. This antisymmetry is consistent both with the equations of 
motion (4.4) and the boundary conditions (4.6). For a >  8, we observe that the 
solutions present plateaux of increasing extent. At the plateaux and in the narrow 
shock-like connecting structure, the solutions satisfy U x V ,  a symmetry consistent 
with (4.4), but not with (4.6). The latter condition is satisfied thanks to the presence 
of humps, which become increasingly narrow and high as a increases. Accurate 
numerical values for the heights of the plateaux and the humps are given in table 1.  
All digits shown are significant. Finally, in figure 8, we show the energy spectrum E ( k )  
for a = 600. Oscillations, due to interference phenomena, are superimposed on a 
range following approximately a k-4 law ; this reflects the existence in physical space 
of quasi-discontinuities of the slope a t  the hump-edges. At high k there is a well- 
resolved dissipation range. 
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FIGURE 7 .  Steady state solutions to the nonlinear AKA equation for various values of a. ( a )  16; 
( b )  64; ( c )  600. Note the increasingly sharp structures (plateaux, shocks, humps). 
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a u* M 
32 1.63 7.32 
64 1.88 7.82 

128 2.16 10.61 
200 2.36 15.19 
256 2.47 16.66 
300 2.55 17.72 
400 2.69 19.77 
500 2.80 21.50 
600 2.89 23.02 
700 2.98 24.38 

TABLE 1. Dependence on the control parameter a of the height of the plateaux U, and of the 
height of the hump M for the steady state solution. All figures shown are significant. 
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FIQURE 8. Steady state energy spectrum of the solution to the nonlinear AKA equation for 
01 = 600 in log-log coordinates. Note the power-law range (approximately k4) modified by 
oscillations due to interferences. 

5. Scaling laws for the steady state 
At this moment, we have only limited analytic grasp on the evolution to the steady 

state. The latter, however, can be described rather thoroughly, especially for large a. 
We start from the nonlinear AKA equation (4.4) with the integral constraint (4.6) 

and the antisymmetry condition (4.7). Integrating once with respect to 2, we find 
that U ( 2 )  and V ( 2 )  are solutions to the system of first-order ODES: 

au 1 av  1 - _  __- 
az - a ( l + P  A ) .  z = a ( m - A ) -  
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The constant of integration A is the same for both equations, since it can be written 
as an average over the 27c period of 1/(1+ V Z )  or of 1/(1+ V 2 ) ,  which are equal in view 
of (4.7). These quantities are the only non-vanishing components of the Reynolds 
stress tensor. A will thus be called the mean Reynolds stress. 

There is an explicit parametric representation of U,  V and 2 in terms of 

= A(V-  U ) .  (5.2) 

This is obtained by the following steps. Eliminating 2 between the two equations of 
(5.1) and integrating once, we obtain 

arctan V -  arctan U = arctan 
~ = A( V -  u) + e,  (E$ (5.3) 

where E is a constant of integration. Taking the tangent of (5.3) and using ( 5 . 2 ) ,  we 
obtain 

s 
U V = - l +  

A tan(s+e)  
(5.4) 

From this and (5.2), we obtain 

1 1 
u = - ( - s + A t ) ,  V = - ( + s * d t ) ,  2A 2A (5.5a,b) 

4As 
tan ( s+e) .  where A = 2 - 4 A 2 +  (5.6) 

Taking the difference of the two equations in (5.1), we obtain after some easy 
manipulations : 

1 sds 
ad2 = +- (5.7) 

- A  A+ sin2 ( s  + E )  ’ 

By integrating (5.7), we complete the explicit paramctric representation. We need 
two conditions to  determine the two constants of integration A and E in terms of a. 
One of them is (4.6), the condition that the average over the period of i7 be minus 
one. The other one is that the periodicity in Z be 271. 

Let us now consider the phase diagram in the (U ,  V)-plane. The autonomous 
system (5.1) has, for fixed A ,  a family of cycles parametrized by 6, given by (5 .3) .  For 
large a the period will be O(a-l), except if the cycles are passing very close to  the 
hyperbolic critical points of (5.1), which are located a t  

U = V = f U , ,  u*= - -1  , (: )” 
How close the cycle gets to the critical points is controlled by how small E is. We can 
now understand qualitatively the salient features of the steady solutions to  the 
nonlinear AKA equation for large a. Figure 9 shows the phase diagram of the 
solution for a = 600. Let us momentarily think of 2 as a time. The solution spends 
most of the time near the critical points; this corresponds to  the plateaux of figure 
7. The straight segment connecting the two critical points along the line U = V 
corresponds to the shock-like structure in figure 7. The large loop connecting the 
critical points corresponds to the humps in figure 7.  The transitions from the loop to 
the straight segment are along trajectories connecting stable and unstable directions 
near the critical points. These are too close to the critical points to be resolved in 
figure 9. 
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U 
FIGURE 9. Phase-diagram in the ( U ,  V)-plane of the steady solution to the nonlinear AKA 

equation for a = 600. 

We have measured the dependence of the two constants of integration A and E over 
a wide range of values of the control parameter a by numerical integration of the 
nonlinear AKA equation (4.4). The results are shown in table 2. It is seen that A 
decreases to  zero, but rather slowly, and that E decreases very quickly. Their 
asymptotic behaviour, for large a, can be obtained analytically as we now show. 

We start from the parametric representation (5.5)-(5.7). In  the ( U ,  V)-plane, there 
is a symmetry with respect to the line U+ V = 0, corresponding to the plus and minus 
signs in front of At .  The condition of positivity of A defines the domain of variation 
of the parameter s. For small A and E ,  the relevant roots of A are near 0 and x .  They 
are easily found to be 

€A 4A 
s, = - 1 - A  +0(E3A), SM = x - - + o ( A ~ ) + O ( E ) .  7 I  (5.9) 

Since the origin for Z has not yet been chosen, we can decide to have Z = 0 
correspond to s = s,. Then, using the mentioned symmetry, we can restrict ourselves 
everywhere to the plus sign in front of Af, so that Z = II: corresponds to s = sM. The 
two integral constraints, that  the average of V ( 2 )  be one and that the half-period be 
x are then exmessed as 

and 

(5.10) 

(5.11) 

In  order to find A and E in terms of a, we expand I and J for small A and small 
E. For J the main contribution is from the hump. For I the main contribution is from 
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U 

2 
2.05 
2.10 
2.25 
2.5 
3 
6 
8 
9 

16 
32 
64 

128 
200 
256 
300 
400 
500 
600 
700 

A 

0.5OO012 557 6 
0.543 754 796 
0.552391 49 
0.562 642 7 
0.56378588 
0.5509317 
0.4614969 
0.423 191 7 
0.408 1785 
0.341 349 
0.27441 
0.22008 
0.17617 
0.15243 
0.1408 
0.13369 
0.121 74 
0.11320 
0.106 69 
0.101 47 

& 

0.570746095 15 
0.373 274 2 
0.321 8924 
0.2330350 
0.155074 
0.08597 
0.004 48 
0.00094 
0.00045 
- 

-, Too small to be computed 

TABLE 2. Dependence on the control parameter u of the constants of integration A and E.  All 
figures shown are significant. 

0.19 i I i 1 1  I I I I I i I i I i 1 i 1 1 -  

0.18 - 

0.17 - 

0.16 - 

0.15 - 
A 

0.14 - - 

0.13 - - 

0.12 - - 

- 

0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 
a-4 

FIQURE 10. Comparison of the leading-order asymptotic prediction (full ]in?) and numerically 
measured values for large a. The mean Reynolds stress A ,  is plotted against a-5. The star symbols 
are labelled by the corresponding values of a. 
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the neighbourhood of the critical points. The leading-order results for a+ 00 are 

&43 N Ln (5.12) 
given hereafter : 

N -&$. (5.13) 

Figure 10 shows the measured values of the mean Reynolds stress A plotted against 
a-3. There is good agreement with the leading-order asymptotics represented by the 
straight line. From (5.12) we also obtain the leading-order behaviour for a+ 00 of the 
heights of the plateaux U ,  and of the humps M = sup V(2) : 

4 9  

(5.14) 

(5.15) 

6.  Concluding remarks 
We have found strong numerical evidence that small-scale forcing lacking isotropy 

and parity-invariance can lead to the formation of very energetic and helical large- 
scale structures. These are generated by a mechanism of inverse cascade with 
successive appearance of structures of larger and larger scales. Eventually, the flow 
goes to a steady-state dominated by structures of the largest available scale. 

It has been noted by V. Arnold (private communication) that the very existence 
of such a steady state may be due to a feature of the steady state equations, (5.1), 
reflecting our special choice of forcing function. The flow in phase space defined by 
(5.1) has zero divergence. Since it is two-dimensional, it has generically closed orbits, 
i.e. space periodic solutions. The question of non-steady solutions with alternative 
forcing will be reported elsewhere. 

Key features of the large-scale dynamics, as observed in the full three-dimensional 
simulations, are captured by an asymptotic expansion leading to the one-dimensional 
nonlinear AKA equations (4.4). From this equation, we obtained analytically the 
scaling laws for the steady-state solutions when the range of unstable modes becomes 
very wide. 

It would be of interest to have a more analytic grasp of the time-evolution in the 
nonlinear regime governed by the nonlinear AKA equation (4.4). The steady 
equations possess ‘cellular’ solutions of period 2n/N for arbitrary integer N .  The 
competition between these could play a role in the intermediate dynamics, as they 
clearly do in the Kolmogorov flow (She 1987). 

So far, we limited out investigations to one-dimensional large-scale dynamics. 
This, however, was only to get some insight into the phenomena resulting from 
nonlinear feedback. The general case can be formulated as well. The relevant (multi- 
dimensional) nonlinear AKA equation is : 

aTwi+Vj (wiwj+Ri j (w) )  = - V i p + ~ V 2 ~ i ,  V j w j  = 0, (6.1) 

where R ,  = (.iitG5). (6.2) 

atci+w5a,ci+c,a,ci =ft+va;5cg-aifi, a5c, = 0. (6.3) 

The small-scale field Iz is obtained from an equation with forcing and advection: 

Note that (aT, V )  and (a t ,  a) refer to large and small scales respectively. 
It is essential for the validity of the equations above that there be a separation of 

scales. As pointed out in $4, the required separation may be a consequence of a small 
Reynolds number, of a small anisotropy or of a weak parity-violation. In  such 
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instances, the AKA instability is relegated to very large scales from the beginning. 
Alternatively, there may be a dynamical process of inverse cascade, the early stages 
of which are not described by equations (6.1)-(6.3), eventually leading to the build- 
up ofa  velocity field on scales much larger than the forcing. Such forcing may or may 
not lack parity-invariance and isotropy : in the nonlinear regime, this is irrelevant 
since full and not just linear dependence on w must be kept in the Reynolds stresses. 
Our equations (6.1)-(6.3) are then appropriate for the subsequent evolution. When 
there is an inverse cascade, we also expect the resulting velocity field to become 
strong, compared to the small-scale field. Further simplifications of the dynamics are 
then expected. The nonlinear self-advection term G j a j G i  may then be dropped to 
leading order, so that (6.3) becomes effectively linear and may be solved explicitly. 
Furthermore, in case of large w ,  the Reynolds stresses Rij will be small compared to 
wi wj. Still, in order to  sustain the large-scale flow, the Reynolds stresses must remain 
relevant. This suggests that the large-scale flow emerging from such an inverse 
cascade should be an approximate solution of the Euler equations, except for 
boundary layers. When the large-scale flow is one-dimensional, this condition is 
trivially satisfied. In  several space-dimensions, a large manifold of steady or 
unsteady large-scale flows with non-trivial geometry is permitted, such as vortices, 
Beltrami flows, etc. 

The numerical calculations were done on the Cyber 180/990 of the Tel Aviv 
University and on the CRAYZ of the Centre do Calcul Vectoriel pour la Recherche 
(Palaiseau). Part of this work was done while one of us (U.F.)  was a visiting 
‘supercomputer scientist ’ at Rutgers University. This work was supported by CEE 
grant ST-2J-0029- 1 -F and the National Science Foundation under Grant OCE- 
87 16027. 
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